A Note on Elliptic Curves Over Finite Fields

By Hans-Georg Rück

Abstract

Let E be an elliptic curve over a finite field k and let $E(k)$ be the group of k-rational points on E. We evaluate all the possible groups $E(k)$ where E runs through all the elliptic curves over a given fixed finite field k.

Let k be a finite field with $q=p^{n}$ elements. An elliptic curve E over k is a projective nonsingular curve given by an equation

$$
\begin{equation*}
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3} \tag{1}
\end{equation*}
$$

with coefficients a_{1}, \ldots, a_{6} in k. For each field \tilde{k} that contains k, the set $E(\tilde{k})$ of points with coordinates in \tilde{k} satisfying (1) forms an Abelian group whose zero element can be chosen as the element $(0,1,0)$. In this note we want to look at the following Question 1: Given a fixed finite field k, what are the possible Abelian groups $E(k)$, when the coefficients of the equation (1) vary over all the possible values in k ? The answer to this question is given in Theorem 3. If we just look at the possible orders $\# E(k)$, the appropriate Question 2 was answered by Waterhouse [4] (see also Deuring [1] for $k=\mathbf{F}_{p}$) using the theorem of Honda and Tate [3] for Abelian varieties over finite fields.

Theorem 1a [4]. All the possible orders* $h=\# E(k)$ are given by $h=1+q-\beta$, where β is an integer with $|\beta| \leqslant 2 \sqrt{q}$ satisfying one of the following conditions:
(a) $(\beta, p)=1$;
(b) If n is even: $\beta= \pm 2 \sqrt{q}$;
(c) If n is even and $p \not \equiv 1 \bmod 3: \beta= \pm \sqrt{q}$;
(d) If n is odd and $p=2$ or 3: $\beta= \pm p^{(n+1) / 2}$;
(e) If either (i) n is odd or (ii) n is even, and $p \not \equiv 1 \bmod 4: \beta=0$.

Following the general ideas of Waterhouse [4] we can also give an answer to the first question.

For an elliptic curve E over k let $\operatorname{End}(E)$ be the ring of group endomorphisms of E which are given by algebraic equations with coefficients in k. It is known that $\operatorname{End}(E)$ is an order in a finite-dimensional division algebra over \mathbf{Q}. This division algebra determines $\# E(k)$:

Theorem 2 [2]. Let E, E^{\prime} be elliptic curves over k; then

$$
\# E(k)=\# E^{\prime}(k) \quad \text { if and only if } \quad \operatorname{End}(E) \otimes_{\mathbf{Z}} \mathbf{Q}=\operatorname{End}\left(E^{\prime}\right) \otimes_{\mathbf{Z}} \mathbf{Q}
$$

Received July 9, 1986.
1980 Mathematics Subject Classificatıon (1985 Revision). Primary 11G20.
*Here "possible orders" or "possible groups" mean that these orders or groups really occur.

There is a special endomorphism π, called the Frobenius endomorphism, which maps a point $P=(x, y, z)$ on E to $\pi(P)=\left(x^{q}, y^{q}, z^{q}\right)$ on E. From this definition it follows immediately that $E(k)$ is the set of all the points P on E with $\pi(P)=P$.

If h is a fixed possible order $\# E(k)$, then by Theorem 2 the division algebra $K=\operatorname{End}(E) \otimes_{\mathbf{Z}} \mathbf{Q}$ is fixed. What are the orders in K that are rings of endomorphisms of elliptic curves over k ? The answer is:

Theorem 1b [4]. Let $h=1+q-\beta$ be a possible order $\# E(k)$, where β satisfies one of the conditions (a), ..., (e) of Theorem 1a.

In case (a): $K=\mathbf{Q}(\pi)$ is an imaginary quadratic field over \mathbf{Q}; all the orders in K are possible endomorphism rings.

In case (b): K is a division algebra of order 4 with center \mathbf{Q}, π is a rational integer, all the maximal orders in K are possible endomorphism rings.

In cases (c), (d), (e): $K=\mathbf{Q}(\pi)$ is an imaginary quadratic field over \mathbf{Q}, all the orders in K whose conductor is prime to p are possible endomorphism rings.

Let h be a possible order and $h=\Pi_{l} l^{h_{l}}$ its decomposition in powers of prime numbers. Since the genus of an elliptic function field is one, the possible $E(k)$ with $\# E(k)=h$ are among all the groups of the form

$$
\mathbf{Z} / p^{h_{p}} \mathbf{Z} \times \prod_{l \neq p}\left(\mathbf{Z} / l^{a_{l}} \mathbf{Z} \times \mathbf{Z} / l^{h_{l}-a_{l}} \mathbf{Z}\right) \quad \text { with } 0 \leqslant a_{l} \leqslant h_{l}
$$

The relation between $\operatorname{End}(E)$ and the structure of $E(k)$ is given by the following lemma:

Lemma 1. Let m be a positive integer which is not divisible by p, and let E_{m} be the group of the points P on E with $m P=0$. Then E_{m} is contained in $E(k)$ if and only if $\pi-1$ is divisible by m in $\operatorname{End}(E)$.

Proof. If $\pi-1$ is divisible by m in $\operatorname{End}(E)$, then $\pi-1=\lambda \cdot m$ with $\lambda \in \operatorname{End}(E)$. Let $P \in E_{m}$, then $(\pi-1)(P)=\lambda \cdot m(P)=0$. Hence $\pi(P)=P$ and $E_{m} \subset E(k)$.
If $E_{m} \subset E(k)$, then the kernel of $\pi-1$ contains the kernel of the multiplication by m. Since the multiplication by m is separable, the universal mapping property for Abelian varieties (see [5, p. 27, Proposition 10]) shows that $\pi-1=m \cdot \lambda$ with $\lambda \in \operatorname{End}(E)$.

Lemma 2. We assume that π is not contained in \mathbf{Q}; then by Theorem 1 b the division algebra K is an imaginary quadratic field. The maximal order in K is denoted by O_{K}. Let l be a rational prime number which is different from p and suppose that $\pi-1=l^{x} \cdot \omega$, where $\omega \in O_{K}$ is not divisible by l. Then

$$
\begin{equation*}
x=\min \left\{v_{l}(q-1),\left[\frac{v_{l}(\# E(k))}{2}\right]\right\} . \tag{2}
\end{equation*}
$$

($[\lambda]$ is the largest rational integer $\leqslant \lambda ; v_{l}(\cdot)$ is the normalized valuation of \mathbf{Z} corresponding to l.)

Proof. The zeta function of E yields the equation

$$
\# E(k)=(\pi-1)(\bar{\pi}-1)=q-(\pi+\bar{\pi})+1
$$

From this we get the two equations

$$
\begin{equation*}
\# E(k)=l^{2 x} \cdot \omega \cdot \bar{\omega} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\# E(k)=(q-1)-(\pi-1)-(\bar{\pi}-1) . \tag{4}
\end{equation*}
$$

If l is prime to ω, then (3) yields $2 x=v_{l}(\# E(k))$ and (4) yields

$$
v_{l}(q-1) \geqslant \min \left\{x, v_{l}(\# E(k))\right\} \geqslant\left[\frac{v_{l}(\# E(k))}{2}\right] .
$$

This proves (2). If l is not prime to ω, then either l is decomposed or is ramified in O_{K}. Suppose $(l)=\mathscr{L} \cdot \overline{\mathscr{L}}$ in O_{K} with $\mathscr{L} \neq \overline{\mathscr{L}}$. Let, for example, $v_{\mathscr{L}}(\omega)>0$. Then $v_{\overline{\mathscr{L}}}(\omega)=0$ and $v_{\mathscr{L}}(\omega+\bar{\omega})=0$. Equation (3) yields $2 x<v_{l}(\# E(k))$ and Eq. (4) yields $x \geqslant \min \left\{v_{l}(\# E(k)), v_{l}(q-1)\right\}$, where equality holds if $v_{l}(\# E(k))$ and $v_{l}(q-1)$ are different. A detailed examination of the possible values of $v_{l}(\# E(k))$ and $v_{l}(q-1)$ shows that (2) holds. Suppose $(l)=\mathscr{L}^{2}$ in O_{K}. If $v_{\mathscr{L}}(\omega)>0$, then $v_{\mathscr{L}}(\omega)=1$. Equation (3) yields $2 x+1=v_{l}(\# E(k))$. Thus we get

$$
x=\frac{v_{l}(\# E(k))-1}{2}=\left[\frac{v_{l}(\# E(k))}{2}\right] .
$$

Equation (4) shows that $v_{l}(q-1) \geqslant\left[v_{l}(\# E(k)) / 2\right]$, which proves (2).
We can now give an answer to the first question and prove the following theorem.
Theorem 3. Let k be a finite field with $q=p^{n}$ elements. Let $h=\Pi_{l} l^{h_{1}}$ be a possible order $\# E(k)$ of an elliptic curve E over k. Then all the possible groups $E(k)$ with $\# E(k)=h$ are the following:

$$
\mathbf{Z} / p^{h_{p}} \mathbf{Z} \times \prod_{l \neq p}\left(\mathbf{Z} / l^{a_{l}} \mathbf{Z} \times \mathbf{Z} / l^{h_{l}-a_{l}} \mathbf{Z}\right)
$$

with
(a) In case (b) of Theorem 1a: Each a_{l} is equal to $h_{l} / 2$;
(b) In cases (a), (c), (d), (e) of Theorem 1a: a_{l} is an arbitrary integer satisfying $0 \leqslant a_{l} \leqslant \min \left\{v_{l}(q-1),\left[h_{l} / 2\right]\right\}$.

Proof. (a) In case (b) of Theorem 1a we get $\pi \in \mathbf{Z}$ and $h=(\pi-1)^{2}$. Furthermore, $\pi-1$ is divisible by m in $\operatorname{End}(E)$ if and only if $\pi-1$ is divisible by m in \mathbf{Z}. Hence Lemma 1 shows that $a_{l}=\min \left\{v_{l}(\pi-1),\left[h_{l} / 2\right]\right\}=h_{l} / 2$.
(b) Let $\{1, \eta\}$ be an integral basis of O_{K}. Then $\pi=a+b \eta$ with $a, b \in \mathbf{Z}$ and $b \neq 0$. This yields $\pi-1=a-1+b \eta$ with

$$
\min \left\{v_{l}(a-1), v_{l}(b)\right\}=\min \left\{v_{l}(q-1),\left[h_{l} / 2\right]\right\}
$$

by Lemma 2. For each $l \neq p$ let a_{l} be arbitrary with

$$
0 \leqslant a_{l} \leqslant \min \left\{v_{l}(q-1),\left[h_{l} / 2\right]\right\} .
$$

Consider the order R in O_{K} whose conductor is equal to $\prod_{l \neq p} l^{v_{l}(l)-a_{l}}$. There is an elliptic curve E over k with $R=\operatorname{End}(E)$ by Theorem 1 b . The exact l-power that divides $\pi-1$ in R is equal to $l^{a_{l}}$ for each $l \neq p$. Hence Lemma 1 shows that $E(k)$ is equal to $\mathbf{Z} / p^{h_{p}} \mathbf{Z} \times \Pi_{l \neq p}\left(\mathbf{Z} / l^{a_{l}} \mathbf{Z} \times \mathbf{Z} / l^{h_{l}-a_{l}} \mathbf{Z}\right)$.

Department of Mathematics
University of Arizona
Tucson, Arizona 85721
FB9-Mathematik
Universität des Saarlandes
D-6600 Saarbrücken, West Germany

1. M. Deuring, "Die Typen der Multiplikatorenringe elliptischer Funktionenkörper," Abh. Math. Sem. Hamburg, v. 14, 1941, pp. 197-272.
2. J. Tate, "Endomorphisms of abelian varieties over finite fields," Invent. Math., v. 2, 1966, pp. 134-144.
3. J. Tate, Classes d'Isogénie des Variétés Abéliennes sur un Corps Fini (d'après T. Honda), Séminaire Bourbaki, Exposé 352, Benjamin, New York, 1968/69.
4. W. Waterhouse, "Abelian varieties over finite fields," Ann. Sci. École Norm. Sup. (4), v. 2, 1969, pp. 521-560.
5. A. Weil, Variétés Abéliennes et Courbes Algébriques, Hermann, Paris, 1948.
